Transport of Escherichia coli in sand columns with constant and changing water contents.
نویسندگان
چکیده
Understanding how changes in volumetric water content (theta) affect bacterial adsorption could help reduce transport of pathogenic and indicator bacteria that may be present in infiltrating wastewater. Three flow regimes that simulated infiltration from a household septic system were evaluated: saturated, unsaturated with a constant volumetric water content theta (constant unsaturated flow), and unsaturated with cyclic changes in theta (variable unsaturated flow). Escherichia coli was suspended in artificial sewage (AS) and applied as step inputs to sand columns, with regular interruptions in input for variable unsaturated flow. A transport model was fit to the saturated and constant unsaturated flow breakthrough curves to determine retardation (R), the first-order filtration coefficient (mu), and the maximum outflow relative concentration (Cmax). The total cells transported as a fraction of input (tau) in all three flow regimes was calculated. Constant unsaturated flow resulted in a significantly lower Cmax (0.633) in comparison with saturated flow (0.803, P < or = 0.05), although unsaturated mu (0.0693 h(-1)) was not significantly different from saturated mu (0.0259 h(-1)). Constant unsaturated flow also resulted in a significantly smaller tau (0.617) than saturated (0.806) or variable unsaturated flow (0.734). In variable unsaturated flow, cell concentrations were out of phase with theta--as the column drained, cell concentrations in the outflow increased; and when a pulse of suspension was applied, cell concentrations decreased. Constant unsaturated flow is probably the best for removal of pathogenic bacteria because this regime resulted in lower maximum concentrations of E. coli and greater cell removal, in comparison with saturated and variable unsaturated flow.
منابع مشابه
Significance of physicochemical factors in the transmission of Escherichia coli and chloride
Background: Organic manures are the source of many pathogenic bacteria which could be dangerous for human health. Bacterial transmission and retention in soil is important for processes ranging from contaminant degradation during in situ bioremediation to transport of pathogenic bacteria into groundwater. Methods: The aim of this study was to evaluate the transport of Escherichia coli and chl...
متن کاملنقش رشد و پوسیدگی ریشه گیاه ذرت در انتقال باکتری اشریشیاکلی در خاک تحت شرایط جریان اشباع
Macrospore created by decaying plant root provides pathways for rapid transport of pollutants in soil profile. The main objective of this study was quantitative analysis of the effect of plant root (Zea mays L.) on bacterial and chloride transport through soil. Experiments were conducted in 9 soil columns packed uniformly with loamy sand. The treatments were bare soil, bare soil with corn (Zea ...
متن کاملحرکت باکتری اشرشیا کولی (Escherichia coli) آزادشده از کود گاوی در خاک غیراشباع مزرعه
In agriculture, cow manures are used to enhance soil fertility and productivity. Escherichia coli is the most common fecal coliform in cow manure and considered as an index for microbial contamination of groundwater resources. The objective of this study was to investigate the transport of Escherichia coli (released from cow manure) through the field soil. Lysimeters (with internal diameter of ...
متن کاملEscherichia coli transport from surface-applied manure to subsurface drains through artificial biopores.
Bacteria transport in soils primarily occurs through soil mesopores and macropores (e.g., biopores and cracks). Field research has demonstrated that biopores and subsurface drains can be hydraulically connected. This research was conducted to investigate the importance of surface connected and disconnected (buried) biopores on Escherichia coli (E. coli) transport when biopores are located near ...
متن کاملاثر شوری آب آبیاری و کود دامی بر آبشویی باکتری اشرشیاکلی آزاد در ستونهای خاک دستخورده
In recent years, microbial contamination of surface and groundwater is a serious problem in some countries, leading to dangerous diseases. Soil salinity and irrigation water can affect the amount of transport or survival of bacteria in soil. In this study, the effect of different levels of salinity of irrigation water with EC: 0.5, 2.5, 6 ds/m and three manures including poultry manure, cow man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2001